Application of Particle Filter for Target Tracking and Market Forecasting

Presented at 2013 CASIS Workshop

Lockheed Martin Space System Company

Particle Filter Technology Initiative

- SBIR/STTR funding from many Gov agencies including NIH, NSF & MDA
- Track before detect capability
- Reduce detection threshold by 4X
- Run on Massively parallel machines like GPUs

Georgia Tech
Dynamic
contour Particle
Filter tracking of
biological
objects

Track Cell growth
Track a female surfer

Particle Filter for Nonlinear System Parameter Estimation and Prediction

Focal Plane Image

Small Business Partners

- Optimal Synthesis Inc
- Polaris Sys Tech
- \$5M USG/LM investment

Commercialization

- Improve search engine speed & accuracy
- Rapid message tracking for cyber defense
- Market forecast (Optimal portfolio allocation and enhanced Black-Scholes market Option price determination)

Technology Highlights

- Search, Detect, Track & Localize multiple objects in a complex nonlinear state space
- Maximum utilization of sensory input
- Apps for Portfolio Investment Strategy
- Running million particles on multiple Graphical Processor Units

LM Program Applications:

Missile Defense Applications

Satellite motion control

Space Debris tracking

General Bayesian Estimation

Aim: Construct the <u>probability density function</u> (pdf) of the system state vector using all available information

Principle of Particle Filter

 Estimate statistical distribution of target uncertainty by propagating & adjusting a large set of random samples (particles)

Bayesian (Monte-Carlo) Recursive Estimation

	Criteria	KF	PF
1	Gaussian statistics	Yes	Yes
2	Non Gaussiaan Statistics	No (Mean & Cov only)	Yes (pdf)
3	Linear Dyanmics	Yes	Yes
4	Nonlinear Dynamic	EKF (Linear expansion)	Particle Propagation
5	Cold Start	No, initialized near true state	Yes, shot gun with particles
6	Convergence time	Trade filter gains with noise	Fast
7	Computation	Simple but requires matrix inversion	Complexity increase with number of particles
8	Track before detect	No	Yes
9	Multiple Targets	Need external data association logic	Captured in the measurement model

Results from tacking a target across an image plane

KF: Increases gains reduces response time and has higher noise

PF: Consistent fast convergence and low noise

Multiple Target Tracks : 4 Targets at SNR = 6

Particle Filter Advantages:

- > 4X reduction in detection threshold
- > 2X increase in detection range

SNR	Pd (Prob. of	Pfa (Prob. of
SINK	Detection)	False Alarm)
6	0.9	10^-6
4	0.8	10^-3
2	0.7	10^-1
1	0.3	10^-1

Tracking Two Targets at SNR = 1 and 6

Modern Portfolio Theory (Harry Markowitz 1950)

- Price movements are unpredictable
- The changes in market prices of securities can be described by the Brownian motion (Random walk)
- Price changes (or return) are normally distributed
- The decisions available to an investor are the proportions of available investments to match their risk-reward profile

(1)
$$p_{k+1}^i - p_k^i = N(\mu^i, \sigma^i)$$
 Price of of security i at time k

(2)
$$R^i = p_k^i - p_0^i$$
 Return on Investment (ROI)

(3)
$$R = \sum_{i=1}^{N} X^{i} R^{i}$$
 Portfolio ROI; linear in X^{i} ; X^{i} are fractional allocation

(4)
$$V = \sum_{i=1}^{N} \sum_{j=1}^{N} \rho_{ij} X^{i} X^{j}$$
 Portfolio Risk (quadratic)

Find max E{R}, from pdf
$$P(R \mid X, V, Z)$$
 = A Posterior pdf of ROI R conditioned on portfolio X, risk V, and market data Z